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Abstract

Various types of artificial neural networks (ANNs) have been successfully applied in hy-
drological fields, but relatively scant on flood inundation forecast. This study proposes
a recurrent configuration of nonlinear autoregressive with exogenous inputs (NARX)
network, called R-NARX, to forecast multistep-ahead inundation depths in an inunda-
tion area. The proposed R-NARX is constructed based on the recurrent neural network
(RNN), which is commonly used for modeling nonlinear dynamical systems. The mod-
els were trained and tested based on a large number of inundation data generated by
a well validated two-dimensional simulation model at thirteen inundation-prone sites in
Yilan County, Taiwan. We demonstrate that the R-NARX model can effectively inhibit er-
ror growth and accumulation when being applied to on-line multistep-ahead inundation
forecasts over a long lasting forecast period. For comparison, a feedforward time-delay
and an on-line feedback configuration of NARX networks (T-NARX and O-NARX) were
performed. The results show that (1) T"TNARX networks cannot make on-line forecasts
due to unavailable inputs in the constructed networks even though they provide the best
performances for reference only; and (2) R-NARX networks consistently outperform O-
NARX networks and can be adequately applied to on-line multistep-ahead forecasts of
inundation depths in the study area during typhoon events.

1 Introduction

The increasing frequency and severity of floods caused by climate change and/or
land overuse has been continuously reported both nationally and globally, especially
in Southeast Asia, in the last two decades. Taiwan is located in the Northwestern
Pacific Ocean, where the activities of subtropical jet streams are frequent. Typhoon
Morakot struck Southern Taiwan with a sudden rainfall (the highest rainfall reaching
1166 mm day_1) on 8 August 2009, and the extreme rainfall induced vast mudslides and
disastrous flooding throughout Southern Taiwan. A mudslide buried the whole Xiaolin
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Village, which caused an estimated 500 deaths. In brief, Typhoon Morakot resulted in
665 deaths, 34 missing, numerous refugees, and roughly NT$ 110 billion (US$ 3.3 bil-
lion) in damages. In 2010, Typhoons Fanapi and Megi hit Southern and Eastern Taiwan
in mid-September and mid-October, respectively. Both typhoons resulted in loss of life
and property, and severely damaged city functions. Flood depth forecasting is an im-
portant component of the contingency plan for alleviating flood risk and loss of life and
property.

Flooding in urban areas poses a great challenge to hydrologists because of the com-
plex interactions and disruptions associated with non-riverine urban flooding. In the
past few decades, simulations of flood inundation extent have been made by the ad-
vances in numerical modeling techniques (Bates et al., 1995; Lane, 1998; Marks and
Bates, 2000; Bates and De Roo, 2000; Hsu et al., 2000; Wheater, 2002; Kang, 2009)
and the use of SAR (synthetic aperture radar) (Bates et al., 2006; Mason et al., 2007;
Zwenzner and Voigt, 2009). Conventional inundation models could provide regional
hydro-geologic characteristics in response to various patterns of storm events (Hsu
et al., 2000; Bates et al., 2003), which are useful information to flood management in
early and/or planning stages, nevertheless these models commonly require substan-
tial computational time for iterative solutions to simulate high-resolution spatial flood
depths. Consequently, on-line inundation forecasts could not be effectively conducted
by conventional inundation models. The great potentiality of artificial neural networks
in hydrological time series forecasting and their encouraging results obtained in lit-
erature were many (i.e. Maier and Dandy, 2000; Brath et al., 2002; Toth and Brath,
2007; Chen and Chang, 2009; Abrahart et al., 2012). The majority of the applica-
tions are river flow forecasting, nevertheless, there are relatively few researches on
on-line flood inundation applications. Valeriano et al. (2009) stated that inundation ar-
eas were estimated using topographic characteristics based on the simulated overflow
volumes recorded at the control point downstream. Chang et al. (2010) integrated arti-
ficial neural networks (ANNs) with K-means clustering method, called clustering-based
hybrid inundation model (CHIM), to forecast 1-h-ahead inundation extents and depths.
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Leedal et al. (2010) proposed 2-D real-time probabilistic inundation maps based on
a modified Kalman filter model coupled into 2-D hydrodynamic model to compute the
maximum multistep-ahead inundation extent. Pan et al. (2011) used hybrid ANNs in
rainfall-inundation forecasting to estimate 1-h-ahead inundation depths.

Because of extremely limited response time to flood disasters in urban areas of Tai-
wan, reliable multistep-ahead inundation depth forecasts would be helpful in managing
contingencies and emergencies and in alleviating flood risk and loss of life and prop-
erty. However, on-line multistep-ahead flood depth forecasts face two challenges. The
first challenge involves extending one-step-ahead forecasting to multistep-ahead fore-
casting. In one-step-ahead forecasting tasks, ANN models estimate the next sample
value without feeding back its output to the model’s input layer. In other words, the
input contains only observed values. For multistep-ahead forecasting tasks, current
inputs would be repeatedly mapped onto various multistep-ahead outputs, or model
outputs would be sequentially fed back to the input layer to provide one-step further
forecasts. In the latter case, the input layer might contain not only observed values but
also model outputs. As known, feeding model outputs back to the input layer makes
the model become a dynamic modeling task, which is substantially more complex than
static modeling tasks. For these complex tasks, recurrent neural networks (RNNSs) play
an important role (Menezes Jr. and Barreto, 2008; Chang et al., 2012). RNNs usually
incorporate with the architecture of a multilayer perceptron (MLP) for an exploitation of
its nonlinear mapping capability (Haykin, 2009). For instance, the simple recurrent net-
work (Elman, 1990) has the outputs of the hidden layer been fed back to the input layer,
and demonstrates its great ability in extracting dynamic time variation characteristics.
In recent years, RNNs have been applied to the field of hydrological modeling (Chang
et al., 2002, 2004; Coulibaly et al., 2005; Besaw et al., 2010; Chiang et al., 2010).

The other challenge is the lack of real-time observed inundation depths, and thus
models usually require proceeding with on-line forecasts through the whole period of
a typhoon event (commonly over 20 h in our cases) without any observed flood depths.
As known, a small prediction error at the beginning can accumulate and propagate in
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the future (Parlos et al., 2000), which results in poor prediction accuracy when models
keep on making forecasts for a long time. To solve the lack of observed depths and mit-
igate error propagation in the long-run, this study proposes a recurrent configuration for
a nonlinear autoregressive with exogenous inputs (NARX) network, called R-NARX, to
construct multistep-ahead inundation depth forecast models. To verify its practicability,
the Yilan County in Northern Taiwan is used as the study area and another two types
(i.e. time-delay and on-line configurations) of NARX networks are also implemented for
fully exploring their capabilities in multistep-ahead flood inundation forecasts.

2 NARX network

NARX is an important and useful mathematical model of discrete-time nonlinear sys-
tems. Nonlinear systems can be approximated by an MLP network, called NARX,
a powerful dynamic model for time series prediction (Jiang and Song, 2011; Menezes
Jr. and Barreto, 2008). The architecture of an NARX network based on a multilayer
perceptron neural network consists of p antecedent values of exogenous input vectors
X(t), such as on-line rainfall intensity; g antecedent actual values z(t + n - g), such as
inundation depths, which are tapped-delay inputs or fed back from the model’s output;
and a single output Z(¢ + n). For many practical applications in hydrological systems,
such as flood inundation depth forecasting in this study, we commonly face the prob-
lem of lacking on-line data. ANNs are well known data-driven models. In case of no
on-line data available, we have to find a way to train and test the networks step-by-step
in real time through the whole flooding period. Bearing this in mind as a motivation, we
propose three configurations of the NARX network to fully explore and examine their
capabilities of learning and generalization in flood inundation depth forecast tasks.
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2.1 Learning algorithms

Three types of configured NARX networks are: (1) time-delay-based static network
(T-NARX); (2) on-line feedback T-NARX network (O-NARX); and (3) recurrent-based
network (R-NARX).

In the T-NARX network (Fig. 1), all the inputs (p antecedent rainfalls and g an-
tecedent inundation depths) are observed values in both training and testing phases.
The T-NARX network is indeed a feedforward time-delay neural network (TDNN), which
is a static neural network and frequently used to predict theoretical time series with
long-range dependence present in data. The proper synaptic weights of the network
can be obtained using the batch mode of the standard back-propagation learning
algorithm for searching minimum errors during the training phase. The constructed
network and its synaptic weights would be fixed in the testing phase. In reality, only
real-time rainfall values could be obtained, while real-time observed inundation depths
could not be obtained on-line. Moreover, when inundation depth forecasts are con-
ducted for more than two-h-ahead (n > 1), the g antecedent actual values (z(t + n - 1),
z(t+n-2),..., z(t+n-q)) are future data and cannot be obtained at present time. Con-
sequently, the constructed T-NARX could not conduct on-line forecasting. The T-NARX
network is implemented mainly to find the optimal solution, where the long-range de-
pendences inside the input-output patterns could be extracted and the solution could
be provided as a reference.

It is interesting to learn the reliability (training data set) and generalization (testing
data set) of the models constructed above. Alternatively, we propose the O-NARX to
investigate the capability of T-NARX networks constructed in the case of no on-line
g antecedent actual inundation depths available. After the networks have been con-
structed, the model outputs of inundation depths (2(¢)) are fed back to the input layer
for on-line forecasting in both training and testing phases (Fig. 2). It is noted that the
O-NARX networks are exactly the same as the T-NARX networks except for two major
differences: the g antecedent actual inundations of the T"-NARX models; and the model
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outputs fed back to the input layer in both training and testing phases of the O-NARX
models for on-line multistep-ahead forecasting.

We intended to further solve the problem of no actual values during the on-line pro-
cess and propose to use the model outputs of inundation depths as the inputs in both
training and testing phases. In this way, the NARX networks would be trained with
imperfect information as well as remaining similar characteristics of input-output pat-
terns in the training and testing phases, and therefore we argued the configured NARX
networks would maintain similar capability of on-line multistep-ahead forecasts in both
phases. Figure 3 shows that, at time ¢ + n, the previous model output is fed back to the
input layer through a delay-line memory of g units. The synaptic weights of the net-
work can be adjusted using the on-line back-propagation learning algorithm to search
for minimum errors on an example-by-example basis during the training phase and
eventually reach a stable condition, where the error could not be further deduced and
all the synaptic weights then remain the same in the following search process. The
constructed network and its synaptic weights would be fixed in the testing phase to
evaluate its applicability and reliability in new events (input-output patterns). We notice
that the input information based on model outputs is not perfect (real) which could in-
clude different fault levels. It is interesting to learn how well the configured networks can
perform by learning imperfect inputs. That is to examine the effect of inhibition ability of
the constructed networks on error growth and accumulation.

2.2 Mathematical formulation

This study minimizes the energy function by the steepest descent method, and the re-
current configuration is used to adjust the synaptic weights on an example-by-example
basis. The mathematical formulation of the R-NARX is presented as follows.

The network contains M exogenous inputs and a single output. For simplicity, as-
sume that p=0, g =1, and n=1 in Fig. 3. Let x(f) denote the M x 1 input vector,
Z(t + 1) denote the corresponding single output, and y(t + 1) denote the corresponding
N x 1 output vector in the hidden layer. The input x(f) and one-step delayed output Z(t)
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are concatenated to form the (M+1) x 1 vector u(t), of which the /th element is denoted
by u;(t). Let A denote the set of indices /, for which x;(¢) is an external input, and B
denote the set of indices /, for which 2(t) is the output of the network. We thus have

_fxi(t)it €A
Mm_{émifieB (1)

Let W denote the N x (M + 1) weight matrix of the hidden layer. Let V denote the N x 1
weight matrix of the output layer. The net activity of neuron j at time t is computed by

net(t+1)= > wju,(t) (2)

ieAuB

The output of neuron ; is obtained by passing net;( + 1) through the nonlinearity f(.),
yielding

yi(t +1) =f(net;(t + 1)) (3)
The net output in the output layer at time ¢ is computed by

net(t + 1) = z vyt +1) (4)
2(t +1) = f(net(t + 1)) (5)

Let z(t + 1) denote the target value at time t + 1. The error e(t + 1) is given as,
e(t+1)=z(t+1)-2(t+1) (6)

Define the instantaneous value of the network error at time £ + 1 as the energy function.

Ea+1)=%e%t+1) (7)
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For the sequential model of the back-propagation learning algorithm, the negative
gradient (-VE) of the energy function is used to adjust the synaptic weights at each
time step. The weight change for any particular weight v; can thus be written as

OE(t+1)

6vj

AV/' = —IZ1

(8)

where 14 is the learning-rate parameter.

Consequently,
%Vj” — et 1)‘”2’—;” = -olt+ D et + 1) | i+ D+ 3 Vf%v,ﬂ)
(9)
—ayfgv;' D_ F(net; (¢ + 1))w,,%fj) (10)
622’_’;1) =f'(net(t + 1)) |yt + 1) + ; v <f’(net/-(z‘ + 1))wj,.%g)> (11)
The same method is also implemented for weight w;;, where Aw;; —02% and

n, is the learning-rate parameter. The partial derivative a/:;(m can be obtained by the

chain rule for differentiation, shown as follows:

OE(t+1) 02(t+1) , oy;(t+1)
aTﬁ_—e(t+1)—ﬁ_—e(t+1)f (net(t+1))§vjaTﬁ (12)
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0Z(t+1)

ow;;

ow
J J

oz(t
= f'(net(t + 1)) | D v;f'(net,(t + 1)) <u, + W,,J> (14)
As compared with the learning algorithm of TDNN, we would like to note that the
proposed algorithm has an additional term in both Eqgs. (11) and (14), in which Z(t)
is a function of wj; (or v;), while in TDNN z(¢) is not a function of w;; (or v;) but an
observation value.

3 Study area and materials

Yilan County is selected as the case study. It is the most beautiful urban county near
Taipei City, but it has a long history of flooding problems, which continue threatening
the lives and livelihoods of its residents. Yilan County, located in Northeastern Tai-
wan, spans an area of approximately 2143 km? and is divided by three river basins
(Toucheng, Lanyoung and Nan’ao). In the last two decades, Yilan has frequently suf-
fered from flood disasters that resulted in grave losses of agricultural crops and private
property. Thirteen villages have been identified as inundation-prone sites by the gov-
ernment project on the renovation of inundation-prone areas. The thirteen inundation-
prone sites are used to investigate the robustness and stability of the proposed models
in this study. Figure 4 shows the thirteen inundation-prone sites and three nearby rain
gauges.

Because historical observed data of inundation depths are rare and no historical hy-
drogpaph of inundation depths is available for storm events, we have to find other data
sets to build forecast models. Fortunately, the synthetic hydrographs of flood depths
were obtained from the Water Resources Agency (WRA), Taiwan, which were well
validated by the urban inundation model linkage of the HEC-1 model, SWMM (the
storm water management model) and the two-dimensional non-inertial overland flow
simulation model. The urban inundation model proposed by Hsu et al. (2000) was
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implemented to simulate inundation in urban areas, where the movement of water in
the studied area is characterized by the sewer flow component and the surcharge-
induced inundation component. SWMM is employed to provide the surcharged flow
hydrographs for surface runoff exceeding the capacity of the storm sewers and the 2-D
diffusive overland-flow model considering the non-inertia equation with alternative di-
rection explicit numerical scheme was used to calculate the detailed inundation zones
and depths due to the surcharged water on overland surface. The detail description of
the urban inundation models (including SWMM and 2-D diffusive overland-flow model)
and its application for a 100-yr 24-h design rainfall of analyzing surface inundation in
the Taipei city can be found in Hsu et al. (2000).

There were 24 design rainfall events and 31 historical rainfall events. The 24 design
rainfall events are comprised by various return periods of three nearby rain gauges.
The 24-h design hyetograph pattern of all rain gauges and the cumulative rainfall for
various return periods (10-, 25-, 100- and 200-yr) in three nearby rain gauges are
shown in Fig. 5 and Table 1, respectively. The 31 historical rainfall events are shown in
Table 2. The corresponding 24-h flood inundation depth hydrographs to those events
(24 design events and 31 historical events) were obtained from the WRA, Taiwan, and
used to configure the models. The proposed models of thirteen sites in this study area
are then thoroughly trained and tested based on flood inundation data generated by
the well validated inundation model with the design rainfall patterns and/or historical
rainfall events. The maximums, means and variances of flood inundation depths at 13
sites are shown in Table 3. It appears that the maximums, means and variances of the
training case are much larger than those of the testing case at all sites. This is mainly
because the return periods of 24 design storms (only used in the training case) are
much larger than those of historical typhoon events (mainly used in the testing case).

12009

HESSD
9, 11999-12028, 2012

R-NARX networks for
multistep forecasts

H.-Y. Shen and
L.-C. Chang

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/11999/2012/hessd-9-11999-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/11999/2012/hessd-9-11999-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

4 Results

This study investigates the multistep-ahead inundation forecast performances of three
types of NARX networks based on a large number of rainfall-inundation patterns for
all thirteen inundation-prone sites in Yilan County. The performances of these three
models are evaluated by the root mean square error (RMSE), as shown below.

RMSE = (15)

where H; and H; are the estimated flood depth and the simulated flood depth of the ith
data, respectively.

For each inundation-prone site, one- to six-h-ahead (n = 1-6) flood depths forecast
models are constructed by the T-, O- and R-NARX networks, and there are 624 training
data (26 events x 24 h) and 696 testing data (29 events x 24 h). The inputs include cur-
rent and two previous hourly rainfalls (£, —1 and - 2, i.e. p = 2 in this study) of three
nearby rain gauges and one hour before the nth-hour forecasted flood depth (t + n -1,
i.e. @ = 1 in this study), and the output is the next n step (¢ + n) flood depth. The input
dimension is 10 and the output dimension is only 1. After implementing an intensive
trial-and-error procedure based on the training data set, the networks are constructed
to have only one hidden layer with three nodes, which in general would have the most
suitable performances for all models of three inundation-prone sites. The networks are
then applied to the testing data set without further modifications. The summarized re-
sults of the three models are presented in Table 4. It represents the results of one- to
six-h-ahead forecasting for the maximum, minimum, and average RMSEs of 13 sites in
Yilan County. The maximum (minimum) indicates the maximum (minimum) value oc-
curs at one of the 13 sites, while the mean indicates the average RMSE value of 13
sites. The results show that the RMSEs of T-NARX networks are relatively smaller than
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the other two networks in all cases. These values indicate the optimal results we might
reach based on the perfect anticipant conditions (rainfall and inundation depths).

We first examine the results of T-NARX and O-NARX, which have exactly the same
structures and synaptic weights at each site. Apparently, -NARX models have much
better performances, in terms of much smaller RMSE values, than O-NARX models
for all the cases in both training and testing cases, especially in the testing cases.
These results provide clear and rigid evidences that the reliability and generalization of
the constructed networks are poor in the training data set and bad in the testing data
set if on-line antecedent inundation depths could not be obtained, which indeed is the
common situation we have.

As we compared the results of O-NARX and R-NARX, the RMSEs of the O-NARX
are much larger than that of the R-NARX in all cases. For instance, the mean RMSEs
of six-hour-ahead forecast in the testing cases are 0.36 m and 0.24 m for O-NARX and
R-NARX models, respectively; and the maximum RMSEs of six-h-ahead forecast in
the training cases are 0.34m and 0.23m for O-NARX and R-NARX models, respec-
tively. These results indicate that R-NARX networks provide much better (accurate and
reliable) forecasts than O-NARX networks.

Figure 6 shows the RMSE growth trends of one- to six-hour-ahead forecasts of three
models in the training and testing data sets. For one- to six-hour-ahead flood depth
forecasts, the RMSEs of T-NARX, R-NARX and O-NARX models increase slightly,
moderately and dramatically, respectively, in both phases. Again, the T-NARX has
the best performances (the smallest RMSEs) among three models; whereas R-NARX
models have better performances than O-NARX models, especially in the testing data
set.

To illustrate the forecasting accuracy of O-NARX and R-NARX models, the scat-
ter plots of the simulated versus forecasted flood depths of site 2 (one-, three- and
six-hour-ahead) in the testing data sets are shown in Fig. 7, respectively. In the R-
NARX model, almost all pairs of forecasted and simulated points scatter closely to
the diagonal line for flood depths in Fig. 7. In the O-NARX model, only one- and
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three-hour-ahead flood depths scatter suitably around the diagonal line. According to
the results, the R-NARX provides a significantly superior performance to the O-NARX.

Figure 8 shows the growth trends of the mean RMSE at 13 sites for one- to six-hour-
ahead forecasts of R-NARX and O-NARX models through on-line forecasts proceeding
from the 1st hour to the 24th hour in the testing phase. It is noticed that the model out-
puts would gradually apart from true values as the forecasting proceeds, and feeding
those imperfect outputs back to the input layer would further accelerate the growth of
forecast errors. The mean RMSE growth trends of R-NARX models increase gradu-
ally, whereas those of O-NARX models increase rapidly. This demonstrates that the
R-NARX model has substantially smaller error accumulation and propagation than the
O-NARX model, and the proposed R-NARX networks can provide reasonable and ro-
bust results for multistep-ahead flood depth forecasts if real-time observed rainfall and
the feedback of model inundation outputs to the input layer can be implemented as the
forecasting proceeds.

5 Conclusions

Due to the lack of observed inundation depths in on-line situations, modeling multistep-
ahead inundation depth forecast is a challenging task. This paper presents a recurrent
configuration for nonlinear autoregressive with exogenous inputs network (R-NARX)
to build on-line multistep-ahead inundation depth forecasts based on the model out-
puts of inundation depth as the input. To compare and verify the reliability of the R-
NARX model, the time delay-based network (T-NARX) and on-line configured network
(O-NARX) were also applied to thirteen inundation-prone sites in Yilan County, Tai-
wan, using a great number of design storms and historical typhoons rainfall-inundation
patterns synthesized from a well validated simulation model to train and test the con-
figured networks. The three models were built to perform one- to six-hour-ahead in-
undation forecasting, and the on-line forecast lasting for 24 h. The results show the
findings: (1) given perfect input information in both training and testing phases, the
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T-NARX networks could offer the most accurate flood depth forecasts than the other
two networks, nevertheless in case of only imperfect input information available, the O-
NARX networks, which have exactly the same structures and synaptic weights as the
T-NARX networks, would provide the worst forecast performances in all the cases; (2)
the R-NARX model can indeed capture the trends of flood depth hydrographs suitably
for multistep-ahead forecasting because it can use imperfect input information to train
the network; (3) the on-line multistep-ahead forecasting by the R-NARX model can
continuously proceed for a long period (24 h in this study case) only based on rainfall
information and the feedback of model’s forecasting output and thus maintain accept-
able accuracy; and (4) the RMSE improvement rates of the R-NARX model are high
than 30 % in all one- to six-h-ahead on-line forecasts as compared with the O-NARX
model.

The results demonstrate that the R-NARX model has the ability to tolerate imperfect
inputs and mitigate error accumulation and propagation effectively when forecasting
over a long period. The R-NARX network has an outstanding capability for multistep-
ahead forecasting on flood depths and can on-line proceed for a long period.
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Table 1. 24-h cumulative rainfall of design rainfall events at three rainfall gauges. g'
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24-h cumulative rainfall of design events (mm) %:
Rain Gauge 10 25 100 200 o ! !
o
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R2 3647 4390 5489 6034 . Tables  Figues
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" All 24 design events were used for training data set. % ! !
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Table 2. Rainfall information of the 31 historical rainfall events.

U
(72}
2 HESSD
peak of total 24-h cumulative e
rainfall intensity peak time rainfall (mm) g 9, 11999-12028, 2012
event date (mm h'1) (hour) R1 R2 R3 _QO?
Typhoon Maggie 5 Jun 1999 925 02 186.5 1725 2775 g R-NARX networks for
Typhoon Kai-Tak 8 Jul 2000 45.5 10 56.1 68.6  89.0 o multistep forecasts
Typhoon Bilis 21 Aug 2000 38.5 01 540 435 74.0
Storm 01" 29 Oct 2000 28.0 07 46.1 31.6 0.1
Storm 02" 3 Nov 2000 93.5 08 2185 1945 1875 & H.-Y. Shen and
Storm 03 11 Nov 2000 535 11 725 705 154.5 2 L.-C. Chang
Storm 04 13 Dec 2000 62.0 16 131.5 147.5 164.0 &
Storm 05 19 Dec 2000 40.0 24 1321 27.6 120.0 E
Typhoon Cimaron 11 May 2001 63.5 14 133.0 150.0 134.0 -
Storm 06 23 Sep 2001 11.5 24 80.0 185 23.0 - g
Typhoon Lekima 24 Sep 2001 77.0 07 102.6 144.0 327.0 [0}
Typhoon Haiyan 15 Oct 2001 16.5 02 225 106 10.1 - ! !
Storm 07 8 Dec 2001 28.0 20 1471 4141 271 —
Typhoon Rammasun 2 Jul 2002 58.0 17 531 76.6 26.1 ! !
Typhoon Vamco 19 Aug 2003 255 19 96.5 21 55.5 o
Typhoon Dujuan 31 Aug 2003 71.5 07 136.1 1245 875 & ! !
Storm 08 10 Sep 2003 27.5 20 410 265 365 -
Typhoon Conson 7 Jun 2004 105.5 05 110.1 223.5 301.0 g-
Typhoon Aere 23 Aug 2004 3.7 01 06 06 90 = ! !
Storm 09 7 Sep 2004 51.5 10 241 691 596 R
Typhoon Nock-Ten 24 Oct 2004 53.5 19 741 981 685 S ! !
Typhoon Haitang 16 Jul 2005 375 02 271 535 1455 &
Typhoon Talim 30 Aug 2005 20.0 01 450 570 595 ! !
Typhoon Longwang 30 Sep 2005 28.0 12 916 916 576 o
Storm 10 9 Jul 2006 65.0 21 330.5 140.0 84.0 o
Typhoon Shanshan 14 Sep 2006 19.0 24 221 326 426 5 g
Typhoon Pabuk 6 Aug 2007 14.5 02 56.0 350 20.0 2
Typhoon Sepat 16 Aug 2007 46.5 13 61.5 585 107.0 - g
Storm 11 13 Oct 2007 86.5 24 148.0 1145 169.5 o
Storm 12 5 Nov 2007 59.0 14 321 32.1 263.6 =
Storm 13 8 Nov 2007 52.0 10 940 835 196.5 g-)U g
o
@
* Two events are used for training data (*) and the other 29 events are used for testing data. =
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Table 3. Maximum, mean and variance of 13 sites’ flood depths.

Training Testing
Spot Max Mean Variance Max Mean Variance
S1 2.45 0.87 0.69 1.12 0.24 0.11
S2 3.41 1.44 1.39 1.91 0.36 0.16
S3 3.60 1.53 1.41 1.77 0.37 0.16
S4 2.42 0.89 0.68 1.10 0.24 0.1
S5 2.84 1.18 0.65 1.27 0.36 0.13
S6 1.85 1.13 0.56 1.56 0.41 0.19
S7 3.29 1.24 1.04 1.10 0.32 0.15
S8 2.92 1.22 0.98 1.42 0.32 0.13
S9 3.01 0.99 0.72 1.24 0.28 0.11
S10 2.87 1.35 0.92 1.54 0.39 0.16
S11 2.61 0.89 0.73 1.13 0.24 0.12
S12 2.92 1.25 0.89 1.33 0.32 0.16
S13 3.00 1.27 1.07 1.78 0.35 0.17
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Table 4. Performance of one- to six-hour-ahead flood depth forecasts of the T-, O- and R-NARX

models for all thirteen sites.

T-NARX O-NARX R-NARX

RMSE (m) max min  mean max min  mean max min mean
t+1 Training 0.10 0.02 0.06 0.17 0.04 0.08 0.13 0.05 0.08
Testing 0.07 0.03 0.05 0.30 0.07 0.18 0.18 0.06 0.12

t+2 Training 0.10 0.02 0.06 0.17 0.04 0.09 0.13 0.05 0.08
Testing 0.07 0.03 0.05 0.32 0.09 0.19 0.19 0.06 0.13

t+3 Training 0.10 0.03 0.06 0.19 0.06 0.11 0.13 0.06 0.09
Testing 0.08 0.03 0.06 0.34 0.14 0.22 0.24 0.07 0.15

t+4 Training 0.11 0.04 0.07 0.21 0.08 0.12 0.14 0.08 0.10
Testing 0.10 0.04 0.07 041 0.15 0.28 0.32 0.10 0.17

t+5 Training 0.12 0.04 0.08 0.19 0.10 0.14 0.18 0.07 0.12
Testing 0.13 0.05 0.09 0.44 0.19 0.33 0.39 0.13 0.21

t+6 Training 0.13 0.04 0.09 0.34 0.12 0.19 0.23 0.07 0.14
Testing 0.15 0.05 0.11 050 0.24 0.36 040 0.16 0.24
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Fig. 1. Architecture of NARX network during training and testing phases in the time delay mode
(T-NARX).
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Zt+n-2

Z(t+n-1)

Fig. 2. Architecture of NARX network during training and testing phases in the on-line time

delay mode (O-NARX).
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training and testing data (the mean RMSE of all sites).
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ahead forecasted inundation depths of the O- and R-NARX models during the testing phase at
S2.

Jaded uoissnosiq

(8
S

o
2

12027


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/11999/2012/hessd-9-11999-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/11999/2012/hessd-9-11999-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

05 , :
t+1
045 2
— - 43
04 o
t+5 -
035" 1
t+6 / )
03 -
£ o
025 o P
//‘ -7 ,./
02 LS
/ T
015/ -
Vs ) - /
o1
005 /
0 .
0 5 10 15 20 25
time(hour)
(a) O-NARX
05
t+1
045 t+2
t+3
04 i
035 ©5
————— t+6
03
S
g 025
02- )
. -
-
0.15- ) S
01 S =T
005 /,’/,’/// —
o ‘ .
0 5 10 15 20 25
time(hour)
(b) R-NARX

Fig. 8. Stability comparison of the O- and R-NARX modes during the forecast period of 24 h

(the mean RMSE of all sites).
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